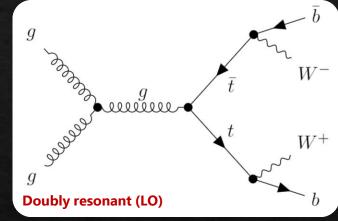
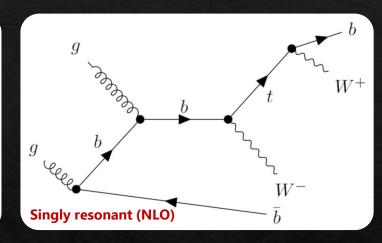
Study of the quantum interference between singly and doubly resonant top-quark production in proton-proton collisions at the LHC with the ATLAS detector

Gianluca Bianco


The WbWb production cross-section at the NLO for Wt


<u>Top-quark</u> production processes at the LHC:

LO: Double t: $gg \rightarrow t\bar{t} \rightarrow WbWb$

LO: Single t: $gb \rightarrow tW \rightarrow WbW$

$$\alpha + \beta \to t + W + b \longrightarrow \mathcal{A}_{\alpha\beta} = \mathcal{A}_{\alpha\beta}^{(Wt)} + \mathcal{A}_{\alpha\beta}^{(t\bar{t})}$$

$$\sigma_{WbWb} \propto \left| \mathcal{A}_{\alpha\beta} \right|^2 = \left| \mathcal{A}_{\alpha\beta}^{(Wt)} \right|^2 + 2\mathcal{R}e \left\{ \mathcal{A}_{\alpha\beta}^{(Wt)} \mathcal{A}_{\alpha\beta}^{(t\bar{t})} \right\} + \left| \mathcal{A}_{\alpha\beta}^{(t\bar{t})} \right|^2$$

Impacts on:

- SM physics and BSM physics
- Search for toponium resonance η_t formation in *WbWb* phase-space

The DR and DS schemes in tW generators

❖ Diagram Removal (DR): all the doubly-resonant diagrams in the NLO *Wt* process amplitude are removed:

$$\left|\mathcal{A}_{\alpha\beta}\right|_{DR}^{2} = \left|\mathcal{A}_{\alpha\beta}^{Wt}\right|^{2}$$

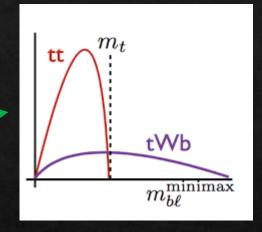
* Diagram Subtraction (DS): NLO Wt cross-sections are modified by implementing a subtraction term, in order to locally cancel the $t\bar{t}$ contribution:

$$\left|\mathcal{A}_{\alpha\beta}\right|_{DS}^{2} = \left|\mathcal{A}_{\alpha\beta}^{Wt}\right|^{2} - \left[\left|\mathcal{A}_{\alpha\beta}^{Wt} + \mathcal{A}_{\alpha\beta}^{t\bar{t}}\right|^{2} - C^{SUB}\right]$$

Cross-section measurement: dataset and event selection

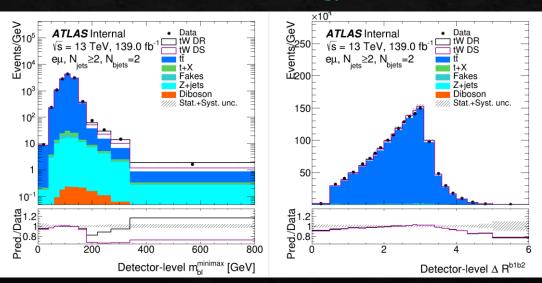
ATLAS Run-2 dataset (2015-2018): $\sqrt{s} = 13$ TeV corresponding to L = 139 fb⁻¹

- * Dilepton OS final state: $e\mu$, ee, $\mu\mu$ selected by single μ/e triggers
- * Interference term taken into account with DR and DS schemes
- Comparison with NLO + PS Powheg + Pythia8 predictions
- Other requirements (kinematic cuts):
 - 1. $p_T^{\text{lepton}} > 28 \text{ GeV}, \ p_T^{\text{jets}} > 25 \text{ GeV} \ \text{and} \ |\eta| < 2.5$
 - 2. 2 b-tagged jets at 60% efficiency with veto on 3° b-tagged jet at 85% efficiency

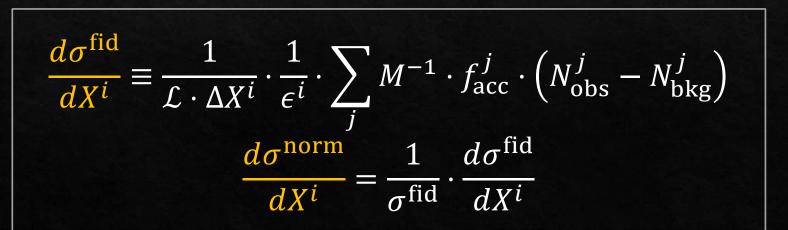

Total events per sample

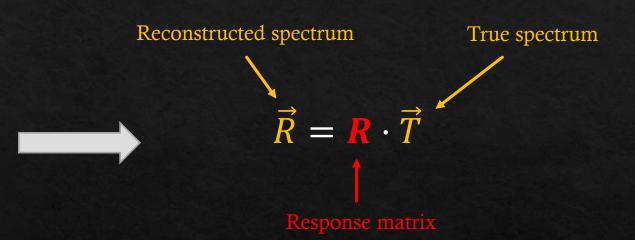
Sample	Total events
$tar{t}$	264000 ± 6000
tW (DR)	8200 ± 180
$tar{t}V$	734 ± 3
Fakes	375 ± 7
Diboson	44.8 ± 0.9
Z+jets	2420 ± 33
Expected	276000 ± 6000
Observed	278333

signal


Observables used in the analysis

- * WbWb final-state cross-section measured as a function of:
 - 1. $m_{bl}^{\text{minimax}} \equiv \min\{\max(m_{b_1l_1}, m_{b_2l_2}), \max(m_{b_1l_2}, m_{b_2l_1})\}$
 - 2. $\Delta R(b_1, b_2)$ where $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$


Detector-level distributions for m_{bl}^{minimax} and $\Delta R(b_1, b_2)$


- Cross-section extraction as a function of:
 - a) m_{bl}^{minimax} (1D)
 - b) $\Delta R(b_1, b_2)$ (1D)
 - c) m_{bl}^{minimax} in bins of $\Delta R(b_1, b_2)$ (2D)

Analysis strategy: the unfolding procedure

- * *Unfolding* data corrected for:
 - 1. Detector efficiency and finite resolution
 - 2. Limited geometrical acceptance
- TTbarUnfold (from RooUnfold) software
- * *Iterative Bayesian* unfolding

Correction factors:

 $f_{\rm acc}^{j}$ = acceptance factor ϵ^{i} = inefficiency factor

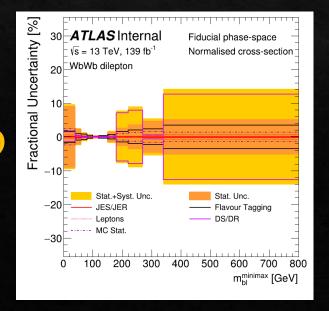
Binning optimization

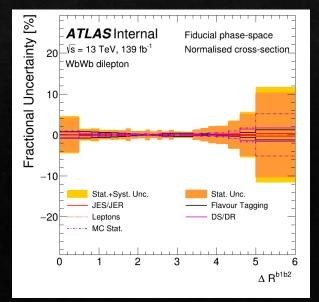
- 1. An *Iterative* procedure: (T R) vs T
- 2. Resolution in each bin of $T: 2 \cdot RMS(T R)$
- 3. Starting from the first bin, merge bins until:

4. Binning validation with "closure" tests

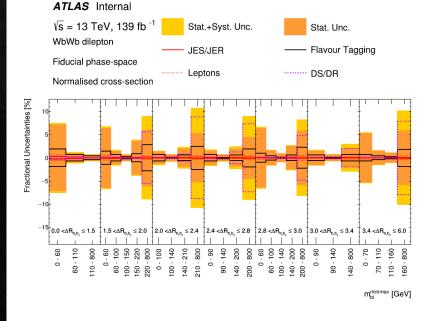
For 2D binning separate optimization of *X* and *Y*:

Variable	Type	δ	k	Bin edges
$m_{bl}^{ m minimax}$ [GeV]	1D	1	5%	0, 40, 60, 80, 100, 120, 150, 180, 220, 270, 340, 420, 580, 800
$\Delta R_{b_1b_2}$	1D	1	5%	0, 0.5, 0.8, 1, 1.3, 1.5, 1.7, 1.8, 2, 2.2, 2.3, 2.5, 2.6, 2.8, 2.9, 3.1 3.4, 3.6, 3.8, 4, 4.3, 4.6, 5, 6
$m_{bl}^{\mathrm{minimax}}$ [GeV]	2D external	1	2%	0, 60, 90, 120, 160, 215, 800
$\Delta R_{b_1b_2}$	2D external	1	0.5%	0, 1.5, 2, 2.4, 2.8, 3, 3.4, 6

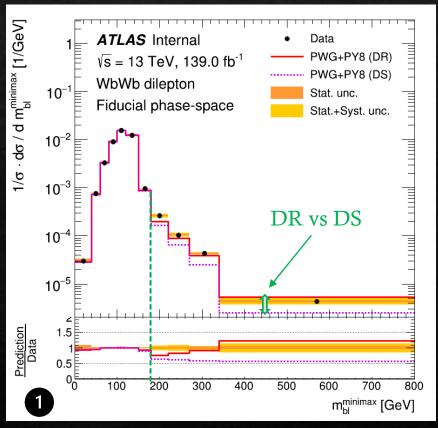

"X in bins Y" \longrightarrow X "internal" and Y "external"

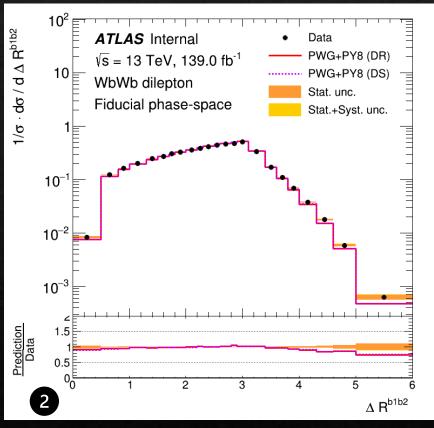

Variable	\mathbf{Type}	$\boldsymbol{\delta}$	$oldsymbol{k}$	Bin edges
m_{bl}^{minimax} in $\Delta R_{b_1b_2}$ (0, 1.5)	2D internal	2	5	0, 60, 110, 800
$m_{bl}^{ ext{minimax}}$ in $\Delta R_{b_1b_2} \ (1.5, \ 2)$	2D internal	2	5	0, 60, 100, 150, 220, 800
$m_{bl}^{ ext{minimax}}$ in $\Delta R_{b_1b_2} \ (2, 2.4)$	2D internal	2	5	0, 100, 140, 210, 800
$m_{bl}^{\rm minimax}$ in $\Delta R_{b_1b_2} \ (2.4, 2.8)$	2D internal	2	5	0, 90, 140, 200, 800
$m_{bl}^{\mathrm{minimax}}$ in $\Delta R_{b_1b_2} \ (2.8, 3)$	2D internal	2	5	0, 60, 100, 140, 200, 800
$m_{bl}^{ ext{minimax}}$ in $\Delta R_{b_1b_2} \ (3, \ 3.4)$	2D internal	2	5	0, 90, 140, 800
$m_{bl}^{ ext{minimax}}$ in $\Delta R_{b_1b_2} \ (3.4 \ 6)$	2D internal	2	5	0, 70, 110, 160, 800

Systematic uncertainties


- Evaluated by:
 - 1. Unfolding the varied MC detector-level spectra with nominal corrections
 - 2. Compare the unfolded result with the particle-level distribution of the generator
- ❖ Detector-related systematics: lepton reconstruction efficiency, JVT, b-tagging, pileup reweighting and luminosity
- Signal modelling systematics: choice of removal scheme and finite sample

statistics of MC generators

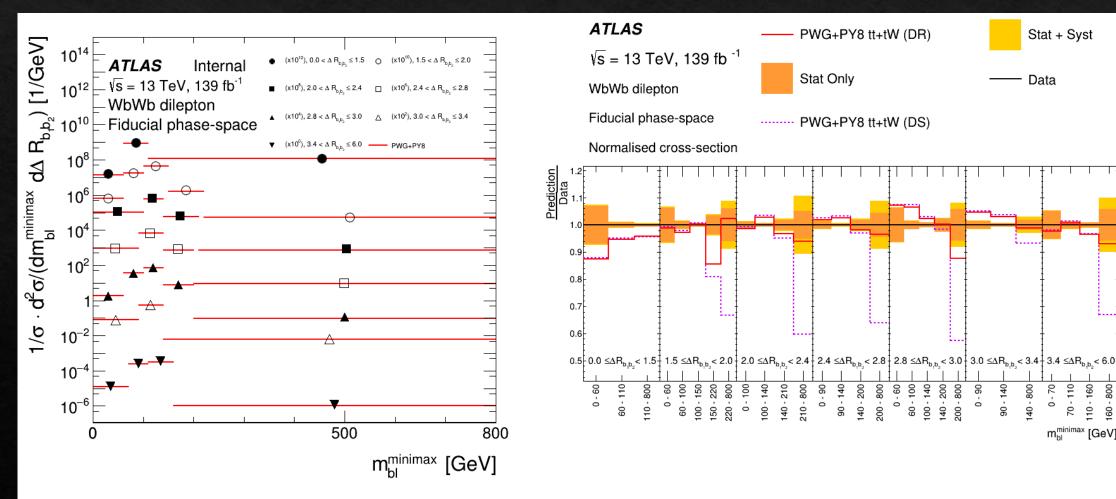




21D

Results (1): 1D cross-sections

1D cross-sections measurement as a function of:


- 1. m_{bl}^{minimax} (log)
- 2. $\Delta R(b_1, b_2)$ (log)

Sample	Fiducial cross-section [pb]
Data	$7.49 {\pm} 0.22$
$t\bar{t} + tWb$ (Powheg+Pythia8, DS) $t\bar{t} + tWb$ (Powheg+Pythia8, DR)	7.4671 ± 0.0017 7.4907 ± 0.0015

Preliminary fiducial cross-section measurement (without proper evaluation of all the systematics)

Results (2): 2D cross-section

2D cross-section measurement as a function of m_{bl}^{minimax} in bins of $\Delta R(b_1, b_2)$

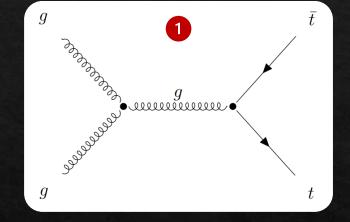
Stat + Syst

m_{bl}^{minimax} [GeV]

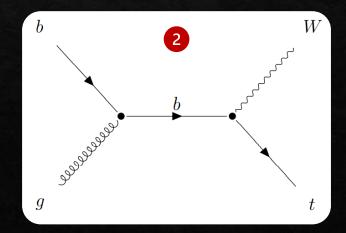
Data

Conclusions and outlooks

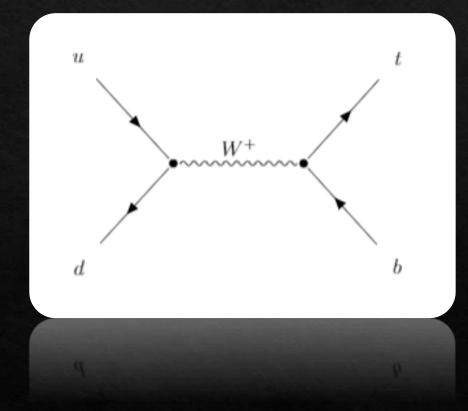
Results:


- *WbWb* cross-sections successfully measured and compared to DR and DS schemes
- m_{bl}^{minimax} distributions and m_{bl}^{minimax} in bins of $\Delta R(b_1, b_2)$ seem to be better described by the DR scheme in the interference region
- $\Delta R(b_1, b_2)$ distribution not enough sensitive to discriminate DR vs DS
- Analysis is going on with current improvements:
 - 1. Consider the other subdominant systematic uncertainties
 - 2. Perform the analysis in $e\mu$ channel only (suppress dominant $Z \rightarrow ll$ background)
 - 3. Measure the cross-section as a function of other interference-sensitive variables (ex: $p_T^{
 m lep}$...)
 - 4. First public results are foreseen for <u>Autumn 2022</u>
 - 5. Search for possible signals of toponium-resonance formation in WbWb phase-space

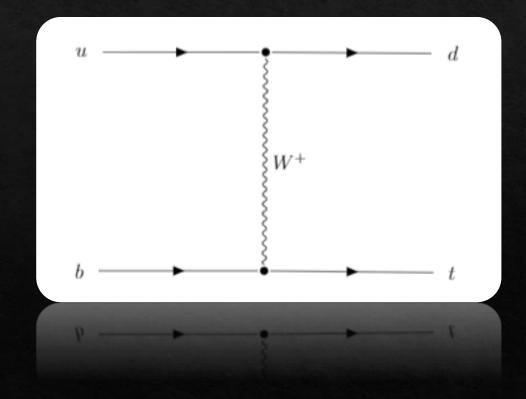
Thanks for your attention!


Top quark production processes at the LHC

- * Top-quark production processes at leading-order (LO) at the LHC:
 - $t\bar{t}$ pair production (Fig. 1): $gg \to t\bar{t} \to WbWb$ (dominant)
 - Single-top production (Fig. 2): $gb \rightarrow tW \rightarrow WbW$ (subdominant)



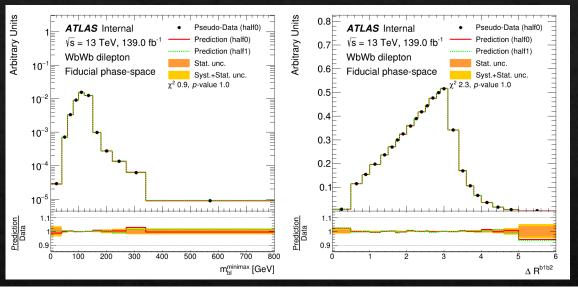
At LO $t\bar{t}$ and tW don't interfere (different final-states)

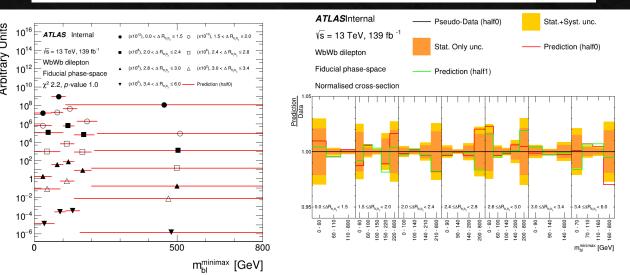


Other single-top production processes

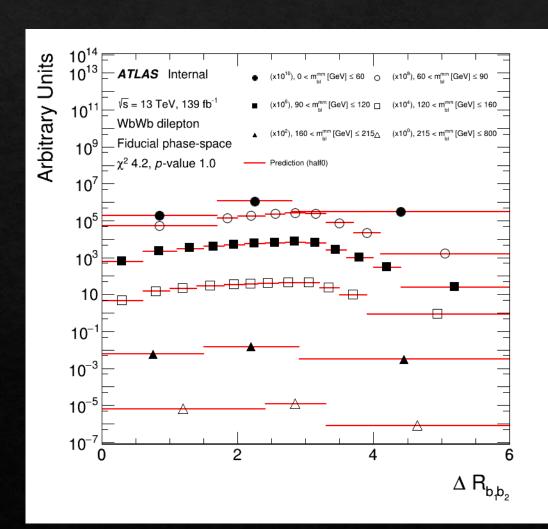
s-channel

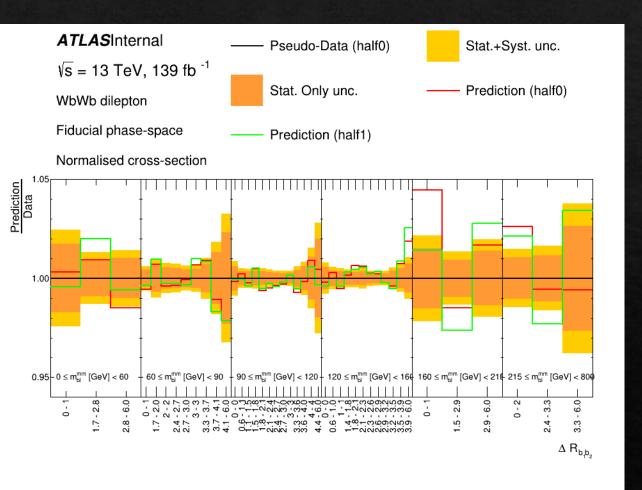
t-channel

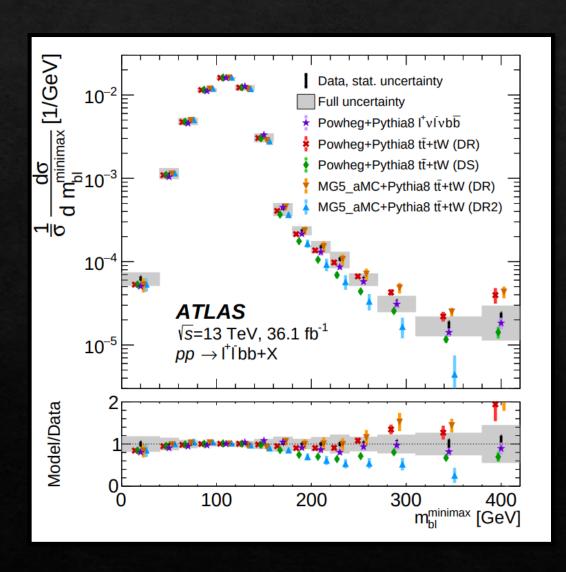



Closure tests

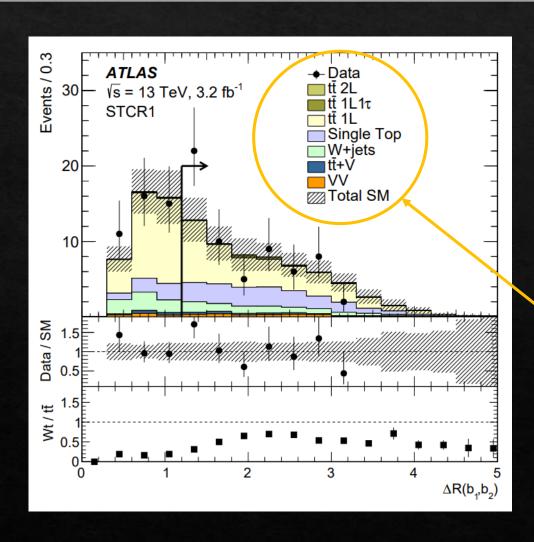
- * Ensure the *stability* of the chosen bins
- Construction of two subsamples:
 - a) half0: pseudo-data
 - b) half1: MC signal


* Procedure:


- 1. Unfolding half0 by applying corrections obtained with half1
- 2. Compare unfolded half0 with particle-level spectra
- 3. Evaluate with a χ^2



Backup: closure tests for $\Delta R(b_1, b_2)$ in bins of $m_{bl}^{minimax}$

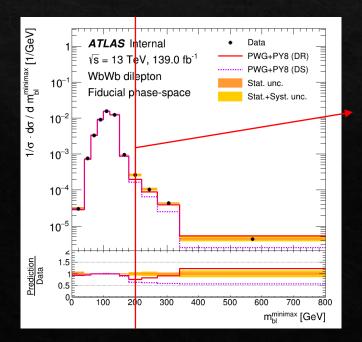


WbWb cross-section previous measurement

- Measurement performed by ATLAS in 2018:
 - Partial Run-2 data ($\sqrt{s} = 13 \text{ TeV } \& L = 36.1 \text{ fb}^{-1}$)
 - Dilepton OS final state: *ee*, *eμ* and μμ

Impact of interference in BSM processes

CERN – *ATLAS*, 2016:

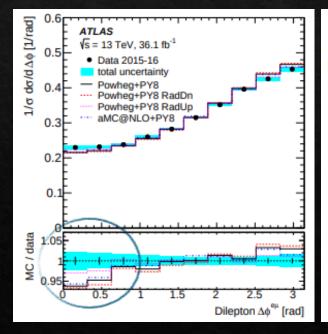

"Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector".

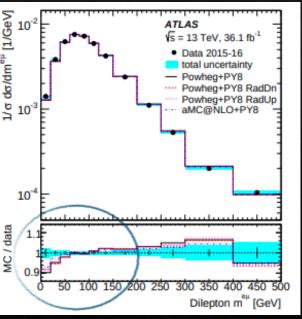
Background processes given by $t\bar{t}$ and Wt

The m_{bl}^{minimax} variable

$$m_{bl}^{\rm minimax} \equiv \min\{\max(m_{b_1l_1}, m_{b_2l_2}), \max(m_{b_1l_2}, m_{b_2l_1})\}$$

- * **bl** coming from t: on shell \longrightarrow two m_{bl} below the top mass bound
- * **bl** coming from **Wb**: off shell \longrightarrow only a single m_{bl} below the top mass bound

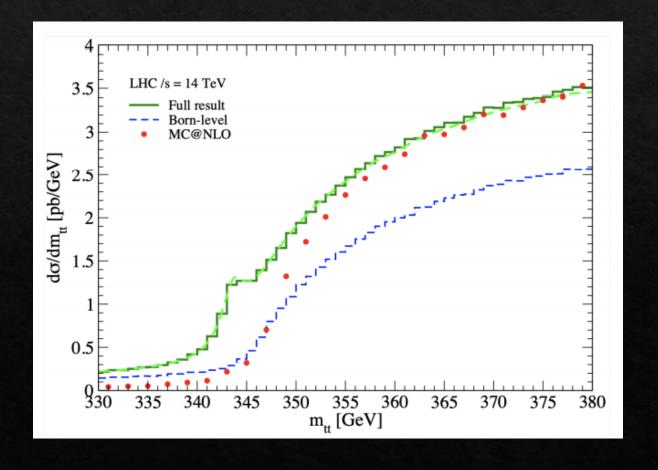

 $m_{bl}^{\text{minimax}} > 200 \text{ GeV},$ contribution of two on-shell top finalstate is suppressed and interference become large


WbWb sensitivity to toponium resonance formation

- * Recent studies (ATLAS 2020): deviations between data and predictions in $t\bar{t} \to WbWb \to ll$ productions:
 - Possibility of a signal in toponium-resonance η_t formation at $\Delta \phi_{ll} < \frac{\pi}{5}$ and $m_{ll} < 50$ GeV

Excess of data could be explained by the existance of the η_t state

❖ WbWb cross-section improvements would lead to a complete investigation of this process in WbWb phase-space

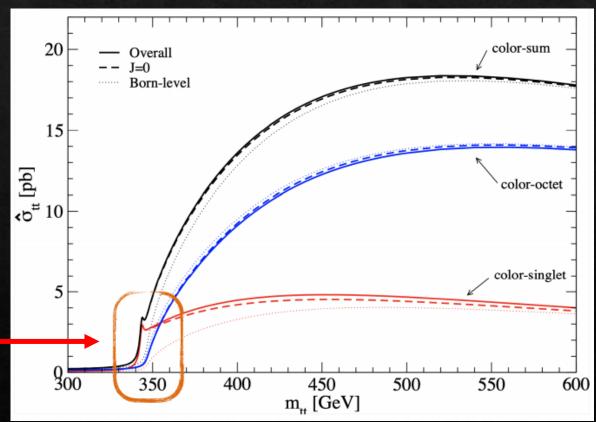


WbWb cross-section for $t\bar{t}$ production, measured by ATLAS in 2020

Toponium resonance: main properties

$$pp \rightarrow \eta_t \rightarrow t^{(*)} \bar{t}^{(*)} \rightarrow W^+ b W^- \bar{b}$$

- Main (expected) properties:
 - Spin state: $J^{PC} = 0^{-+}$ (dominant)
 - Mass: $m_{\eta_t} = 344 \text{ GeV}$
 - Decay width: $\Gamma_{\eta_t} \approx 7 \text{ GeV}$
 - Cross-section: $\sigma(13 \text{ TeV}) \approx 6.5 \text{ pb}$
- * Threshold enhancement:
 - Full WbWb differential distribution
 - NLO WbWb differential distribution
 - Pure toponium contribution: green red



Toponium resonance: spin states

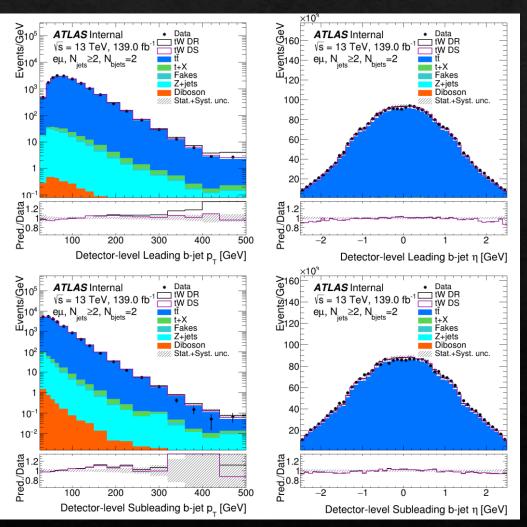
- Color singlet toponium ground states, two possible configurations:
 - J = 1 spin triplet state (ψ_t)
 - J = 0 spin singlet state (η_t)
- But toponium states decay instantly!

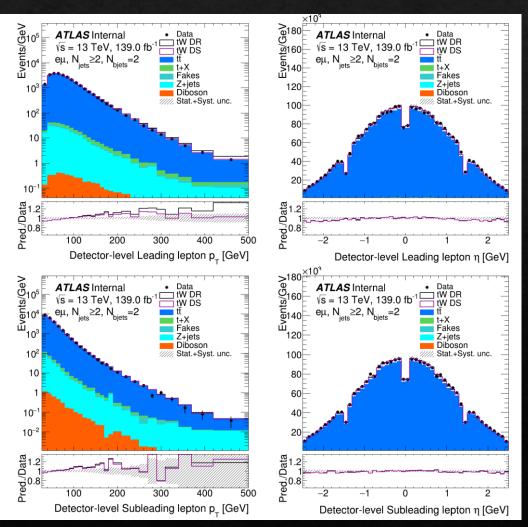
- ♦ Colour singlet dominate at threshold in pp colliders:
 - The gg-singlet channel dominates
 - The J = 0 state dominates (L = S = 0)

Toponium resonance: sensitive variables

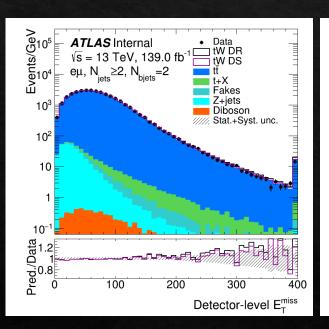
* Angular separation between the two leptons in the rest frames:

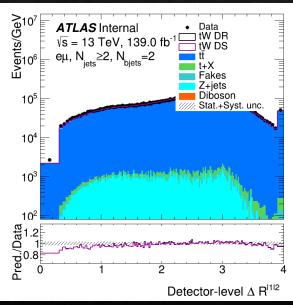
$$(1+\cos\bar{\theta})(1+\cos\theta)+(1-\cos\bar{\theta})(1-\cos\theta)+2\sin\bar{\theta}\sin\theta\cos(\bar{\phi}-\phi)$$

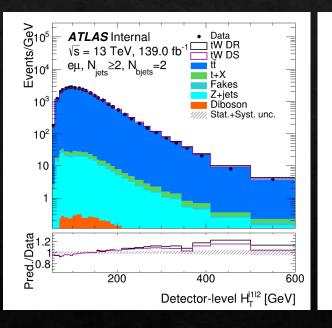


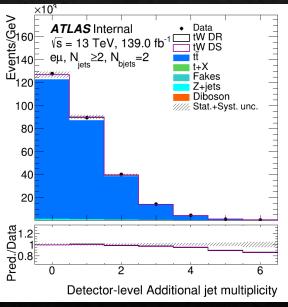

$$m_{\bar{l}l'}^2 = 2E_{\bar{l}}E_{l'}(1 - \sin\bar{\theta}\sin\theta\cos(\bar{\phi} - \phi) - \cos\bar{\theta}\cos\theta)$$

- \Rightarrow Azimuthal angle separation: $\Delta \phi_{ll}$
 - * Toponium characteristics: small m_{ll} and small $\Delta \phi_{ll}$

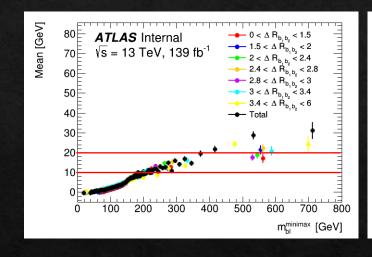

Backup: detector-level variables control plots (1)

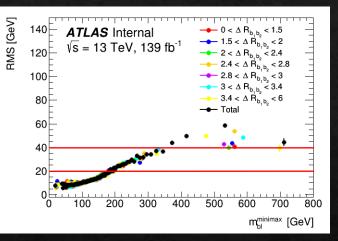

Detector-level distributions for leading and subleading leptons and b-jets p_T and η

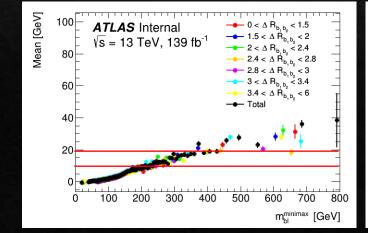


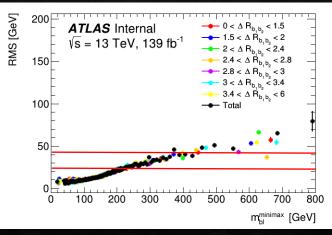


Backup: detector-level variables control plots (2)






Backup: resolution plots


DS scheme

DR scheme

