

Study of the quantum interference between singly- and doubly-resonant top-quark production in the *WbWb* phase space with the ATLAS detector

108° SIF Congress: 12-16 September 2022

Speaker: Gianluca Bianco

Supervisors: Prof. Maximiliano Sioli, Dott. Marino Romano

Outline of the talk

- Introduction
- The *WbWb* production
- Event selection and requirements
- Systematic uncertainties
- Differential cross-sections measurement
- Conclusions

Introduction

- Study of the quantum interference between singly- and doubly-resonant top-quark production
 - I.e: measurement of the WbWb cross-section in the dilepton channel
 - Consider variables sensitive to the interference between $t\bar{t}$ and tW: $m_{bl}^{ ext{minimax}}$
- ATLAS Run-2 dataset (2015-2018): $\sqrt{s} = 13$ TeV corresponding to L = 139 fb⁻¹
- Measurement of the cross-section through the **unfolding** procedure

Previous measurement (2018)

PRL 121 (2018) 152002

The WbWb production cross-section at the NLO for tW

The DR and DS schemes in tW generators

• **Diagram Removal** (DR) - all the doubly-resonant diagrams in the NLO tW process amplitude are removed

$$\left|\mathcal{A}_{\alpha\beta}\right|_{DR}^{2} = \left|\mathcal{A}_{\alpha\beta}^{tW}\right|^{2}$$

 Diagram Subtraction (DS) - NLO tW cross-sections are modified by implementing a subtraction term, in order to locally cancel the tt contribution:

$$\left|\mathcal{A}_{\alpha\beta}\right|_{DS}^{2} = \left|\mathcal{A}_{\alpha\beta}^{tW} + \mathcal{A}_{\alpha\beta}^{t\bar{t}}\right|^{2} - C^{SUB}$$

The $m_{bl}^{\min max}$ variable

 $pp \rightarrow WbWb \rightarrow l_1^- b_1 v_{l,1} l_2^+ \overline{b}_2 \overline{v}_{l,2}$

$$m_{bl}^{\text{minimax}} \equiv \min\{\max(m_{b_1l_1}, m_{b_2l_2}), \max(m_{b_1l_2}, m_{b_2l_1})\}$$

• *bl* coming from *t*: on-shell

- two m_{bl} below the top mass bound
- *bl* coming from *Wb*: off-shell

b: off-shell \longrightarrow only a single m_{bl} below the top mass bound

For $m_{bl}^{\text{minimax}} > m_{top}$

contribution of two on-shell top final-state is suppressed and interference become large

Preliminary event selection and samples

- Dilepton <u>opposite-sign</u> and <u>different-flavour</u> final state ($e\mu$, $e\tau$, $\mu\tau$) with $N_{jets} \ge 2$ and $N_{bjets} = 2$:
 - This selection reduces the Z + jets background and allows comparison with the bb4l prediciton
- Other requirements (kinematical cuts): $p_T^{\text{lepton}} > 28 \text{ GeV}$, $p_T^{\text{jets}} > 25 \text{ GeV}$ and $|\eta| < 2.5$
- Samples:
 - **Signal**: $t\bar{t} + tW$ (Powheg + Pythia8 samples)
 - **Backgrounds**: $t\bar{t}V$, fake leptons, diboson production, Z + jets

Unfolding procedure

- Unfolding data corrected for:
 - Detector efficiency and finite resolution
 - Limited geometrical acceptance
- Particle-level phase space
- Iterative Bayesian unfolding:

$$\frac{d\sigma^{\text{fid}}}{dX^{i}} \equiv \frac{1}{\mathcal{L} \cdot \Delta X^{i}} \cdot \frac{1}{\epsilon^{i}} \cdot \sum_{j} M^{-1} \cdot f_{\text{acc}}^{j} \cdot \left(N_{\text{obs}}^{j} - N_{\text{bkg}}^{j}\right)$$
$$\frac{d\sigma^{\text{norm}}}{dX^{i}} = \frac{1}{\sigma^{\text{fid}}} \cdot \frac{d\sigma^{\text{fid}}}{dX^{i}}$$

Systematic uncertainties

- Evaluated by:
 - 1. Unfolding the varied MC detector-level spectra with nominal corrections
 - 2. Compare the unfolded result with the particle-level distribution of the generator
- Detector-related systematics:
 - Lepton and jet reconstruction efficiency, b-tagging, pileup reweighting, luminosity, etc...
- Signal modelling systematics:
 - Choice of removal scheme, finite sample statistics of MC generators, etc...
- Background modelling systematics:
 - Related to background processes

Differential cross-sections

Absolute differential xsec

Normalized differential xsec

Gianluca Bianco - University of Bologna & INFN

Conclusions

- Preliminary results:
 - We are aiming for a measurement of the *WbWb* cross-section with the full Run-2 data with half the uncertainty with respect to previous measurement
 - This measurement could be compared to many predictions and can be used to define a better uncertainty linked to interference
 - In general, DR predictions seem to better describe the interference region
 - Other interference-sensitive variables than m_{bl}^{\min} have been excluded
- Future improvements:
 - We need to optimize the selection
 - Search for possible signals of toponium-resonance formation in *WbWb* phase-space

Backup

The ATLAS detector

Top quark production processes at the LHC

- Top quark production processes at the LO
 - $t\bar{t}$ pair production (Fig. 1): $gg \rightarrow t\bar{t} \rightarrow WbWb$ (dominant)
 - **Single-top** production (Fig. 2): $gb \rightarrow tW \rightarrow WbW$ (subdominant)

At LO $t\bar{t}$ and tW don't interfere (different final-states)

Impact of interference in BSM processes

Toponium resonance in WbWb phase-space

- Recent studies (ATLAS 2020): deviations between data and predictions in $t\bar{t} \rightarrow WbWb \rightarrow ll$ productions:
 - Possibility of a signal in toponium-resonance η_t formation at $\Delta \phi_{ll} < \frac{\pi}{r}$ and $m_{ll} < 50 \text{ GeV}$

Excess of data could be explained by the existance of the η_t state

 WbWb cross-section improvements would lead to a complete investigation of this process in WbWb phase-space

Eur. Phys. J. C 80 (2020) 528